基于对话的关系提取(对话)任务旨在预测对话中出现的论点对之间的关系。大多数先前的研究都使用微调预训练的语言模型(PLM),仅具有广泛的功能来补充多个扬声器对话的低信息密度。为了有效利用PLM的固有知识,没有额外的层次,并考虑有关参数之间关系的分散的语义提示,我们提出了一个使用PINGT(grasp)使用关系语义的指导模型。我们采用基于及时的微调方法,并捕获给定对话的关系语义线索,其中1)参数意识的提示标记策略和2)关系线索检测任务。在实验中,GRASP在对话框数据集上以F1和F1C得分来实现最先进的性能,即使我们的方法仅利用PLM,而无需添加任何额外的层。
translated by 谷歌翻译
人类通常通过利用关于他们正在交谈的人的主题和背景信息的先验知识来进行对话。然而,现有的会话代理和数据集不考虑此类综合信息,因此它们有一个限制生成知识和人格正确融合的话语。为解决此问题,我们介绍了一个呼叫进行定制对话(焦点)数据集,其中包括用户的角色和维基百科知识建立了自定义答案。为了评估预先训练的语言模型的信息和定制话语的能力,我们利用BART和GPT-2以及基于变压器的模型。我们评估了他们的生成能力,自动分数并对人类评估进行定性结果。我们仔细检查模型是否反映了我们提出的两个子任务,人物接地(PG)和知识接地(KG)的充分人物和知识。此外,我们表明我们的数据的话语通过接地质量评估来构建具有正确的知识和角色。
translated by 谷歌翻译
尽管电子保健记录(EHR)丰富,但其异质性限制了医疗数据在构建预测模型中的利用。为了应对这一挑战,我们提出了通用医疗预测框架(UNIHPF),该框架不需要医疗领域知识和对多个预测任务的最小预处理。实验结果表明,UNIHPF能够构建可以从不同EHR系统处理任何形式的医疗数据的大规模EHR模型。我们的框架在多源学习任务(包括转移和汇总学习)中大大优于基线模型,同时在单个医疗数据集中接受培训时也会显示出可比的结果。为了凭经验证明我们工作的功效,我们使用各种数据集,模型结构和任务进行了广泛的实验。我们认为,我们的发现可以为对EHR的多源学习提供进一步研究提供有益的见解。
translated by 谷歌翻译
本文提出了一种具有多个循环训练的训练方法,可在低位量化的卷积神经网络(CNN)中实现增强性能。量化是获得轻量级CNN的流行方法,其中使用预审计模型的初始化被广泛用于克服低分辨率量化中的降解性能。但是,实际值及其低位量化量之间的大量量化错误在获得复杂网络和大型数据集的可接受性能方面遇到了困难。所提出的训练方法在多个量化步骤中轻轻地将验证模型的知识传达给了低位量化模型。在每个量化步骤中,模型的训练重量用于初始化下一个模型的权重,而量化位深度减少了一个。随着量化位深度的微小变化,可以弥合性能差距,从而提供更好的权重初始化。在循环训练中,在训练低位量化模型后,其训练的权重用于初始化其准确模型要训练。通过以迭代方式使用精确模型的更好的训练能力,该方法可以在每个循环中为低位量化模型产生增强的训练重量。值得注意的是,训练方法可以分别提高ImageNet数据集上的二进制RESNET-18的TOP-1和前5个精度,分别为5.80%和6.85%。
translated by 谷歌翻译
弱监督的多标签分类(WSML)任务是使用每个图像的部分观察标签学习多标签分类,由于其巨大的注释成本,它变得越来越重要。在这项工作中,我们首先将未观察到的标签视为负标签,将WSML任务投入到嘈杂的多标签分类中。从这个角度来看,我们从经验上观察到,在多标签环境中也出现了在嘈杂的多级环境中最初发现的记忆效应。也就是说,该模型首先了解清洁标签的表示,然后开始记住嘈杂的标签。基于这一发现,我们提出了WSML的新方法,该方法拒绝或纠正大型损失样品,以防止模型记住嘈杂的标签。如果没有沉重且复杂的组件,我们提出的方法在几种部分标签设置上的先前最先前的WSML方法(包括Pascal VOC 2012,Coco,MS Coco,Nuswide,Cub,Cub和OpenImimages V3数据集)都优于先前的最先前的WSML方法。各种分析还表明,我们的方法实际上效果很好,证实了在弱监督的多标签分类中正确处理大损失的问题。我们的代码可从https://github.com/snucml/largelossmatters获得。
translated by 谷歌翻译
EHR Systems缺乏统一的代码系统,以陈旧的医学概念,这使ASA屏障在大规模到多个诊所和袜子的大规模中部署深层学习博客。为了克服这个问题,我们介绍了基于embedding的嵌入式嵌入式,DesCEMB,代码无话代表学习框架Forehr。DESCEM利用神经语言的FlexibIL-ITY,了解模型使用它们的文本描述,而不是直接映射每个事件TOA专用嵌入的临床事件。DESCEMB以遥控前提的基于嵌入的嵌入式代码,尤其是在零拍摄TransferTask(一家医院到另一医院),并且能够为异端代码数据集进行单一统一模型。
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
Feature acquisition algorithms address the problem of acquiring informative features while balancing the costs of acquisition to improve the learning performances of ML models. Previous approaches have focused on calculating the expected utility values of features to determine the acquisition sequences. Other approaches formulated the problem as a Markov Decision Process (MDP) and applied reinforcement learning based algorithms. In comparison to previous approaches, we focus on 1) formulating the feature acquisition problem as a MDP and applying Monte Carlo Tree Search, 2) calculating the intermediary rewards for each acquisition step based on model improvements and acquisition costs and 3) simultaneously optimizing model improvement and acquisition costs with multi-objective Monte Carlo Tree Search. With Proximal Policy Optimization and Deep Q-Network algorithms as benchmark, we show the effectiveness of our proposed approach with experimental study.
translated by 谷歌翻译
Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability. However, it ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference accuracy. This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization. The proposed method selectively expands channels for the quantization sensitive layers while satisfying hardware constraints (e.g., FLOPs, PARAMs). Based on in-depth analysis and experiments, we demonstrate that the proposed method can adapt several popular networks channels to achieve superior 2-bit quantization accuracy on CIFAR10 and ImageNet. In particular, we achieve the best-to-date Top-1/Top-5 accuracy for 2-bit ResNet50 with smaller FLOPs and the parameter size.
translated by 谷歌翻译